lunes, 1 de noviembre de 2010

Nanotecnologia



                                                                 



La nanotecnología es la tecnología que nos permite fabricar cosas a escala nanométrica (se abrevia nm.) que equivale a la millonésima parte de un milímetro o  la billonésima parte de un metro.
También se le puede definir como la ciencia que manipula en forma individual átomos y moléculas para crear maquinarias de tamaño molecular, que usualmente se mide en nanómetros.

Así como las computadoras 'rompen' la información a su más básica forma, es decir, 1 y 0, la nanotecnología juega con la materia en sus más elementales formas: átomos y moléculas.

Con una computadora -una vez que la infomación se ha convertido y organizado en combinaciones de 1 y 0- la información se puede reproducir y distribuir fácilmente. Con la materia, los elementos básicos de la construcción molecular son los átomos, y la combinación de átomos se convierten en moléculas. La nanotecnología le permite manipular estos átomos y moléculas, haciéndo posible la fabricación, reproducción y distribución de cualquier sustancia conocida por el hombre, tan fácil y barata como reproducir datos en una computadora. 

Un gran paso para la nanotecnología

Los físicos G. Binning y H. Rorher, del laboratorio de IBM en Zurich, desarrollaron el microscopio de efecto túnel, un nuevo concepto de microscopía que permitió observar por primera vez los átomos individualizados. En 1985, los mismos investigadores desarrollan el microscopio de fuerza atómica.

  • El efecto túnel


El microscopio de efecto túnel dispone de una punta tan afilada que su extremo está compuesto por un solo átomo. Por ella fluye una débil corriente eléctrica. Esta punta se aproxima al material que se va a estudiar hasta situarse a menos de un nanómetro (millonésima de metro) de distancia, manteniendo con la muestra una diferencia de potencial de 1 voltio. Mientras va recorriendo la superficie, la punta se mueve hacia arriba o hacia abajo, reproduciendo la topografía atómica de la muestra.

  • Fuerza atómica



El microscopio de fuerza atómica (AFM) es muy similar al de efecto túnel; pero, en lugar de utilizar la diferencia de potencial, está en contacto directo con la muestra y detecta los efectos de las fuerzas atómicas. Su resolución es parecida a la del anterior, pero tiene la ventaja de poder ser utilizado para observar muestras no conductoras, como las biológicas.
Modulando el voltaje que llega a la punta, estos microscopios pueden no solo ver átomos, sino moverlos, colocarlos y manipularlos.

  • Nanologo de IBM

En 1990, científicos de la IBM consiguieron escribir el logotipo de su empresa a escala atómica. Como “tinta” utilizaron 35 átomos de xenón; “el papel” fue una lámina de metal cristalino, y el “lápiz”, un microscopio de efecto túnel, con el que lograron mover y colocar los átomos. La altura de las letras fue de unas 5 millonésimas de milímetro, y la separación entre los átomos que conformaban el logotipo fue 13 millones de veces más delgada que un cabello humano. Después, fotografiaron su proeza utilizando el mismo microscopio de efecto túnel.

Desde ese momento histórico, la nanotecnología dejó de ser la idea fantástica que por primera vez planteara el físico Richard Feynman en 1959, para convertirse en una tecnología concreta, aunque aún en su infancia.

Perspectivas sobre nanotecnología

Actualmente, alrededor de 40 laboratorios en todo el mundo canalizan grandes cantidades de dinero para la investigación en nanotecnología. Unas 300 empresas tienen el término nano en su nombre, aunque todavía hay muy pocos productos en el mercado.
Algunos gigantes del mundo informático como IBM, Hewlett - Packard (HP), NEC e Intel están invirtiendo millones de dólares al año en el tema. Los gobiernos del llamado Primer Mundo también se han tomado el tema muy en serio, con el claro liderazgo del gobierno estadounidense, que para este año ha destinado 570 millones de dólares a su National Nanotechnology Initiative.

En España, los científicos hablan de nanopresupuestos. Pero el interés crece, ya que ha habido un par de congresos sobre el tema: en Sevilla, en la Fundación San Telmo, sobre oportunidades de inversión, y en Madrid, con una reunión entre responsables de centros de nanotecnología de Francia, Alemania y Reino Unido en la Universidad Autónoma.

El motivo de tanto interés no es extraño. La nanotecnología tiene potencial para cambiarlo todo: las medicinas y la cirugía, la potencia de la informática, los suministros de energía, los alimentos, los vehículos, las técnicas de construcción de edificios y la manufactura de tejidos. Muchas cosas más que ni imaginamos. 


Nanomateriales

Hasta el momento, los avances en nanoteenología han dejado solamente un material nuevo, pero que está generando aplicaciones revolucionarias por todos lados: los nanotubos.
No obstante el mayor obstáculo en el desarrollo de nanomateriales sigue siendo la manipulación de moléculas. Actualmente, los investigadores construyen nanoestructuras cogiendo una molécula por vez; pero para producirlos a escala masiva para el mercado, deberán primero aprender a manejar con precisión miles e incluso millones de moléculas de un solo tirón.
  • Buckyballs


En 1985, investigadores de la Universidad de Rice, EE.UU., observaron que condensando carbono vaporizado en un medio inerte, este formaba estructuras perfectamente redondas de 60 átomos, similares a una pelota de fútbol compuesta por paños hexagonales. Estas moléculas fueron bautizadas como buckyballs, y constituyen el descubrimiento más famoso en la corta historia de la nanotecnología, algo que le valió al grupo el Premio Nobel de Química 1996.





Buckyball hecha de 60 moléculas de carbón.

  • Nanotubos


Afines de los 80, este mismo grupo de investigadores empleó buckyballs para construir delgadas estructuras tubulares de extremos cerrados y de varios miles de átomos de largo: los nanotubos. Además de ser las estructuras más diminutas jamás construidas por el hombre, los nanotubos presentan características prometedoras como ser excelentes conductores de la electricidad y tener una dureza asombrosa superior al acero. Además son extremadamente versátiles.

De acuerdo a donde se coloquen sus dos extremos -apuntando a un lado o juntándolos- el nanotubo conducirá electricidad como un metal o se portará como un semiconductor. Encapsular un nanotubo dentro de otro también crea nuevas posibilidades. A la fecha, varios componentes electrónicos básicos han sido ensamblados usando nanotubos. Su excelente desempeño ha quedado comprobado en campos como la informática.

Nanoinformatica

Donde la nanotecnología va tener más influencia es en el campo de la computación y comunicaciones debido en parte a que estos han sido los motores de su desarrollo.
Las cosas han cambiado mucho desde las primeras computadoras electrónicas. El ENIAC I fue desarrollado en la Universidad de Pennsylvania en 1945. Estaba compuesto por más de 70.000 resistencias, 18.000 válvulas y 10.000 condensadores; pesaba 30.000 Kilos y ocupaba 1.300 metros cuadrados.

Pero el descubrimiento del chip, a mediados de los años setenta, ha reducido, por suerte para todos, el tamaño de los ordenadores. El primer 486 utilizaba tecnología de una micra (millonésima parte de un metro). Hasta hace poco tiempo, los Pentium tradicionales utilizaban tecnología de 0.35 y 0.25 micras. Los modelos más modernos han reducido esta valor hasta 0.13 micras. El nanómetro marcará el límite de reducción a que podemos llegar cuando hablamos de objetos materiales, en este caso dispositivos computacionales.

La velocidad de los ordenadores y su capacidad de almacenamiento han sido las principales barreras en el desarrollo de la inteligencia artificial. Con la nanotecnología aparece la posibilidad de compactar la información hasta límites inimaginables y crear chips con memorias de un terabit por centímetro cuadrado. Un Terabit es la capacidad de la memoria humana, lo que quiere decir que los ordenadores del futuro podrán llegar a tener inteligencia propia, es decir, serán capaces de aprender, tomar decisiones y resolver problemas y situaciones "imprevistas", ya que con esta memoria se les podrá dotar de códigos extremadamente complejos. Según los expertos, esto se puede conseguir en un plazo de no más de cinco años. Lógicamente, con ordenadores tan pequeños, los dispositivos de uso también cambiarán. Al tiempo que evoluciona la tecnología de reconocimiento de voz y de escritura, se irán desarrollando otro tipo de "ordenadores personales" en miniatura, casi invisibles, insertados en objetos de uso común como un anillo, por ejemplo, o implantados en nuestro propio organismo en forma de lentillas o chips subcutáneos.

También es necesario fabricar otros conductores, porque los existentes no sirven. Los experimentos con nanotubos de carbón (milmillonésima parte de un metro) para la conducción de información entre las moléculas ya han dado resultados. IBM anunció que ha conseguido crear un circuito lógico de ordenador con una sóla molécula de carbono, una estructura con forma de cilindro 100.000 veces más fino que un cabello. Este proyecto permite introducir 10.000 transistores en el espacio que ocupa uno de silicio. 

La posibilidad de desarrollar miniordenadores de cien a mil veces más potentes que los actuales podría suponer que éstos tuvieran inteligencia propia, lo que cambiaría los sistemas de comunicaciones. Por ejemplo, los datos podrían transmitirse con imágenes visuales mediante "displays" incorporados en forma de lentillas. La comunicación telefónica se realizaría por audioconferencias en 8 o 10 idiomas. 

En un futuro no muy lejano, los PCs estarán compuestas, en lugar de transistores, por otros componentes como las moléculas, neuronas, bacterias u otros métodos de transmisión de información. Entre estos proyectos se encuentra el futuro ordenador "químico", desarrollado por científicos de Hewlett-Packard y de la Universidad de California (Los Ángeles). Los circuitos de este nuevo modelo son moléculas, lo que supone transistores con un tamaño millones de veces más pequeños que los actuales.

Esto es uno de los aspectos más interesantes ya que no sólo se podrá desarrollar máquinas mucho más pequeñas que una bacteria o una célula humana. Además, se puede empezar a tomar elementos del mundo biológico –por ejemplo, trocitos de ADN para procesadores de ordenadores–. Así, científicos del grupo de investigación Montemagno de la Universidad de Cornell han logrado unir ya elementos biológicos y mecánicos creando pequeños motores del tamaño de un virus. Aunque aún faltan muchas cosas por afinar, estos motores podrían trabajar en el interior de una célula humana. Así también en el mes de noviembre del 2001 científicos israelitas,  presentaron una computadora con el ADN tan diminuta que un millón de ellas podría caber en un tubo de ensayo y realizar 1.000 millones de operaciones por segundo con un 99,8 por ciento de precisión. Es la primera máquina de computación programable de forma autónoma en la cual la entrada de datos, el software y las piezas están formados por biomoléculas. Los programas de la microscópica computadora están formados por moléculas de ADN que almacenan y procesan la información codificada en organismos vivos. 

El proyecto de chip molecular sustituirá al silicio y a la óptica. Se prevé que se podrán fabricar computadoras del tamaño de una mota de polvo y miles de veces más potentes que los existentes. De momento, se ha conseguido simular el cambio de una molécula, mediante su rotura, pero falta crear moléculas que se curven sin romperse.

Dispositivos nanoinformáticos


Usando nanotubos semiconductores, investigadores de varias empresas y laboratorios han desarrollado circuitos de computación de funcionamiento lógico y transistores, las puertas electrónicas lógicas de que están compuestos los chips.

En agosto del año pasado, en lo que es considerado un paso fundamental hacia la computadora molecular, IBM mostró el primer circuito de ordenamiento lógico formado por nanotubos de carbono. Las computadoras moleculares basadas en estos circuitos tienen el potencial de ser mucho más pequeñas y rápidas que la actuales, además de consumir una cantidad considerablemente menor de energia.

En cuanto a los transistores, los Laboratorios Bell de Lucent Technologies mostraron en octubre del 2001 un transistor de escala molecular con la misma capacidad que el clásico transistor de silicio. Intel no ha mostrado ninguna investigación relacionada a los nanotubos, pero trabajando con silicio a escala nanométrica, la compañía hizo, también el año pasado, otro anuncio igualmente espectacular el transistor de silicio más rápido jamás producido, de apenas veinte nanómetros.

El transistor se enciende y se apaga -recordemos el 1 y el 0 del sistema binario, que forma la base de la informática- más de mil millones de veces por segundo, un 25% más veloz que los transistores más recientes. Para el 2007, Intel espera estar fabricando chips conteniendo mil millones de estos transistores, lo que le permitiría llegar a una velocidad de 20 Ghz. con la energía de un voltio.

En cuanto a memorias, IBM anunció hace apenas cinco meses que su proyecto de nombre código Millipede, que pretende crear capacidades mayores a las existentes, se basa en procesos de escala nanométrica. Este dispositivo de almacenamiento regrabable, de alta capacidad y densidad, trabaja en base a mil pequeñas agujas similares a las del microscopio AFM, con puntas capaces de tocar átomos individuales y escribir, leer y borrar así grandes cantidades de información en un espacio mínimo. De apenas nueve milímetros cuadrados, los investigadores de IBM estiman que en los próximos años, la tecnología Millipede puede superar la capacidad de la tecnología de memoria Flash en cinco veces o más.

Este tipo de desarrollos -tanto los nanotransistores, como las nanomemorias- pueden ser cruciales para absorber las crecientes e inmensas capacidades de procesamiento y memoria que demandan los desarrollos multimedia, más aún cuando se avizora que de acá a máximo diez años la tecnología actual de semiconductores habrá agotado sus posibilidades de crecimiento.

En cuanto a alimentación, la corporación japonesa NEC, junto a otros institutos de investigación; ha anunciado el desarrollo de una célula de carburante con una capacidad diez veces mayor que una batería de litio, pero de tamaño diminuto, en lo que constituye otra aplicación de los nanotubos de carbono, esta vez como electrodos. En el futuro próximo, esta batería le podría permitir a dispositivos portátiles, como las notebooks, funcionar varios días seguidos sin conec tarse a la corriente.

Los desarrollos en Nanotecnología se están aplicando también a los sistemas de seguridad. La empresa taiwanesa Biowell Technology presentó, unsintetizado que puede utilizarse para probar la autenticidad de pasaportes y otros documentos y tarjetas, con el fin de evitar el pirateo.

Este chip podrá utilizarse también en tarjetas de débito, carnés, matrículas de automóviles, permisos de conducir, discos compactos, DVD, programas informáticos, títulos y valores, bonos, libretas bancarias, antigüedades, pinturas, y otras aplicaciones en las que se necesite comprobar la autenticidad.


Nanosatelites


Las aplicaciones más inmediatas de la Nanotecnología se dirigen al sector de la exploración espacial. Entre éstas, podemos hablar de bases de lanzamiento de gran altitud, estaciones espaciales, vehículos ligeros y muy resitentes, naves personales para viajar por el espacio o los conocidos nanosatélites, como el NANOSAT, un proyecto de desarrollo de un nanosatélite español, iniciado en 1995.

El NANOSAT parte de un concepto ideado en el INTA y cuya gestión y construcción se realiza totalmente en España, partiendo de una nueva filosofía de diseño: más pequeño, más potente, más rápido, con una aplicación específica concreta, con mayores prestaciones y menor consumo. El éxito en este proyecto de vanguardia puede suponer una importante presencia española en la futura "pequeña revolución en el espacio".

Nanorobots

Aunque todavía no se han fabricado nanorobots, existen múltiples diseños de éstos, incluso no pueden ser del todo robots es decir pueden hasta ser modificaciones de células normales llamadas también células artificiales. Las características que éstos deben de cumplir, entre las que se pueden mencionar:

Tamaño.- Como el nombre lo indica, los nanorobots deben de tener un tamaño sumamente pequeño, alrededor de 0.3 micras ( 1micra=1x10-6).


Componentes.- El tamaño de los engranes o los componentes que podría tener el nanorobot seria de 1-100 nanómetros (1nm=1x10-9) y los materiales variaría de diamante como cubierta protectora, hasta elementos como nitrógeno, hidrógeno, oxigeno, fluoruro, silicón utilizados quizás para los engranes.


Velocidad de procesamiento.- El procesador central del nanorobot solo poseerá una velocidad de 106-109 operaciones por segundo, por lo tanto una mayor inteligencia de procesamiento no será requerida.


El ensamblador.- Se le ha dado el término de “ensamblador” a aquella pieza del nanorobot que es semejante a un brazo submicroscopico, cuyas características principales son las de construir a discreción la materia, reaccionar con compuestos, construir secuencias de moléculas y quizás la de copiarse a sí mismo, teniendo con esto la capacidad de autoreplicarse. Se le puede comparar con los ribosomas, las organelas encargadas de la trascripción y traducción de proteínas. Según los recientes diseños el brazo del ensamblador seria de diamante, de 100 nm de largo por 30 nm de diámetro. Todo esto suena muy complejo, pero cuando se llegue a la tecnología para fabricarlo será relativamente económico.

Los ingenieros en Cornell y en Stanford, así como en Zyvex (la autodenominda "la primera empresa de desarrollo molecular de nanotecnología") están trabajando para crear ese ensamblador ahora. Pero los obstáculos abundan. A diferencia de la construcción de materiales tradicionales que se quedan donde se les deja, los átomos y las moléculas son volátiles y se reacomodarán constantemente por si mismos para mantener su estabilidad.
Los estimados varian, De 5 a 10 años, según Zyvex; o de 8 a 15 años, de acuerdo a la comunidad científica.

La clave para la manufactura con estos ensambladores a gran escala es la auto-reproducción. Un robot de tamaño nano haciendo trabajos en madera en tamaño nano puede ser dolorosamente lento. Pero si estos ensambladores de pueden reproducir así mismos, podemos tener trillones de ensambladores trabajando al unísono. Entonces no tendríamos límites para el tipo de cosas que quisieramos crear. "No solo el proceso de fabricación se transformará, sinó todo el concepto del trabajo. Los productos de consumo serán prácticamente ilimitados, de poco valor, inteligentes y duraderos" de acuerdo a un artículo escrito por Chris Peterson y Gail Pergamit del Foresight Institute.



Nanomedicina

La nanotecnologia al aplicarse a la medicina se le conoce como nanomedicina. Con la descripción de los nanorobots, se puede intuir que la utilidad de éstos en las ramas medicas será muy importante. Para empezar los nanorobot medirán de alrededor de 0.5-3 micras, por lo cual podrán flotar libremente por los vasos sanguíneos. Las principales aplicaciones de estos será la interacción de los nanorobots con las células sanguíneas (eritrocitos y leucocitos) en la reparación de los tejidos, la cura del cáncer o SIDA y la posible terapia de enfermedades genéticas.

Sin lugar a dudas la nanotecnologia cambiara en gran medida a la medicina, ya que aunque la medicina de hoy comprende que la mayoría de las enfermedades se deben a cambios estructurares en las moléculas de las células, dista mucho ahora de corregirlas. Esto es el caso con el cáncer ya que se sabe que se debe a una reproducción anormal de un tejido, pero la solución sigue siendo extirpar el tejido afectado, seguimos dando soluciones macroscópicas, sin resolver las microscópicas y este tipo de problemas es de lo que sé encargar de resolver la nanomedicina.

Por lo tanto, la nanotecnología  puede significar el final de las enfermedades como la conocemos ahora. Si pesca un resfrío o se contagia de SIDA, sólo tendrá que tomar una cucharada de un líquido que contenga un ejercito de nanobots de tamaño molecular programados para entrar a las células de su cuerpo o combatir los virus. Si sufre una enfermedad genética que azota a su famila, al ingerir algunos nanobots que se introducirán en su ADN, repararán el gen defectuoso. Inclusive la cirugía plástica tradicional será eliminada, ya que nanobots médicos podrán cambiar el color de sus ojos, alterar la forma de su nariz, y más aún, podrán hacerle un cambio total de sexo sin el uso de cirugía. 

Nanorobots inmunológicos


El sistema inmune de nuestro cuerpo es el encargado de proporcionar defensas contra agentes extraños o nocivos para nuestro cuerpo, pero como todos los sistemas éste siempre no puede con todo. Entre estas deficiencias se encuentra que muchas veces no responde( como es el caso con el SIDA) otras veces sobreresponde (en el caso de enfermedades autoinmunitarias). Cabe decir que los nanorobots estarán diseñados para no provocar una respuesta inmune, quizás las medidas que tienen estos bastaran para no ser detectados por el sistema inmune. La solución que ofrece la nanomedicina es proporcionar dosis de nanorobots para una enfermedad especifica y la subsecuente reparación de los tejidos dañados, substituyendo en medida a las propias defensas naturales del organismo.

Substituyendo al eritrocito


Una de las aplicaciones inmediatas que se planea alcanzar con la nanomedicina es la de hacer un diseño que mejore la funcionalidad de la hemoglobina, la proteína encargada de la transportación de oxígeno y dióxido de carbono en los tejidos, la cual se encuentra en el eritrocito. Hoy en día hay avances en este campo, siendo los principales investigadores Chang y Yu los cuales están desarrollando un nuevo sistema basado en la encapsulación de hemoglobina a través de nanocapsulas.


En la figura se muestra un diseño de un nanoinvento el cual se encuentra en pulmón, se observa un rotor el cual va a acarrear él oxigeno por diferencia de las presiones parciales del oxigeno ya que por fuera hay mayor cantidad que adentro por lo tanto el nanoinvento va a meter él oxigeno en un pequeño tanque. Todos estos procedimientos van a ser controlados por él medico, se supone que mediante mecanismos de ondas de baja frecuencia que el nanoinvento los interpreta como comandos a seguir. Este procedimiento será el mismo a nivel periférico. La utilidad de esto es que estos aparatos proporcionaran alrededor de un almacén de 530 litros de oxigeno aumentando 2000 veces el almacenamiento de oxigeno comparado con la hemoglobina.

La biostasis: una aplicación para el futuro


Él termino de biostasis se aplica a la capacidad de tener un tejido que se mantenga en condiciones estables durante un lapso de tiempo indefinido. También es sinónimo de criogenia ya que para este tipo de método se propone utilizar alguna sustancia que vitrifique o congele los tejidos a fin de protegerlos. Este método es una esperanza para las personas que tienen alguna enfermedad que no puede ser curada en su tiempo. Aunque esta técnica por ahora no se le puede relacionar con la nanotecnologia, en un futuro sí ya, que la idea es reparar los tejidos de la persona en un futuro, y los nanorobots van a ser los encargados de este trabajo.

Aunque aun los médicos no se ponen de acuerdo si la resucitación del paciente puede ser viable, los investigadores de este tema sostienen que en un futuro se tendrán las técnicas para lograr hacer esto.

Modificando el DNA


Otra de las expectativas que se pueden lograr con la nanomedicina será sin duda la modificación de material genético humano y por consiguiente la cura de las enfermedades genéticas asociadas. Aunque la ingeniería genética es la que se encarga de la investigación en especial de esta molécula, la nanotecnología va a ser la encargada de proporcionar las herramientas necesarias para la manipulación de tan preciada molécula.

La Nanotecnologia en la creación del Hombre Biónico


Una de las cuestiones a superar para poder pensar en un ejemplar biónico tiene que ver con el tamaño de los componentes de ese sistema maravilloso que es el cuerpo humano. Una increíble multiplicidad de funciones tienen lugar en partes del sistema imposibles de reproducir... hasta ahora.

Cuando el cuerpo realiza un movimiento, digamos por ejemplo tomar una copa de cristal, está cumpliendo muchas y muy complicadas funciones al mismo tiempo, de las cuales en su mayoría ni siquiera tenemos conciencia. Mover los músculos de cinco dedos al mismo tiempo, a la vez que sensamos la presión necesaria para sostener la copa sin dejarla caer pero sin romperla. Pero eso no es todo: mientras tomamos la copa, seguimos usando otros sistemas como el auditivo y el visual, mantenemos el equilibrio corporal, respiramos, medimos el nivel de glucosa, procesamos alimentos, etc., etc. ¿Cómo instalar componentes que cumplan esas funciones en espacios tan pequeños, y guardando las formas anatómicas?

El primer paso fue la reducción de los procesadores hasta convertirlos en micro-procesadores, pero eso no es suficiente. La Nanotecnología entra entonces en escena. Esta disciplina tiende a reducir los componentes a un tamaño increíblemente pequeño. El objetivo es reunir un grupo de funciones -que podríamos llamar lógicas- en reacciones dentro de un compuesto ideado para provocar los efectos deseados, en este caso, ciertas tareas. Este nano-componente realiza sus funciones de manera independiente, es decir, tiene un alto grado de autonomía. El reducido tamaño de estos elementos hace necesaria la intervención de robots que aportan su altísima precisión para su construcción.

¿Podrá la Nanotecnología cooperar con la Biónica en el alumbramiento del hombre biónico? Predecir los plazos en que eso se logre es sumamente difícil. Pero la ciencia y la tecnología han creado un tiempo potencial que se acelera exponencialmente. Al incorporar nuevos recursos, éstos dan el marco para nuevos desafíos en un continuum con ritmo propio, capaz de hacernos recuperar nuestra adormecida capacidad de asombro.


Historia cronológica de la Nanotecnología
Fecha
Acontecimiento
Los años 40Von Neuman estudia la posibilidad de crear sistemas que se auto-reproducen como una forma de reducir costes.
1959Richard Feynmann habla por primera vez en una conferencia sobre el futuro de la investigación científica: "A mi modo de ver, los principios de la Física no se pronuncian en contra de la posibilidad de maniobrar las cosas átomo por átomo".
1966Se realiza la película "Viaje alucinante" que cuenta la travesía de unos científicos a través del cuerpo humano. Los científicos reducen su tamaño al de una partícula y se introducen en el interior del cuerpo de un investigador para destrozar el tumor que le está matando. Por primera ve en la historia, se considera esto como una verdadera posibilidad científica. La película es un gran éxito.
1985Se descubren los buckminsterfullerenes
1989Se realiza la película "Cariño he encogido a los niños", una película que cuenta la historia de un científico que inventa una máquina que puede reducir el tamaño de las cosas utilizando láser.
1996Sir Harry Kroto gana el Premio Nobel por haber descubierto fullerenes
1997Se fabrica la guitarra más pequeña el mundo. Tiene el tamaño aproximadamente de una célula roja de sangre.
1998Se logra convertir a un nanotubo de carbón en un nanolapiz que se puede utilizar para escribir
2001James Gimzewski entra en el libro de récords Guinness por haber inventado la calculadora más pequeña del mundo.

Aplicaciones de la nanotecnología medio y a largo plazo

Los campos que están experimentando contínuos avances son:
- Energias alternativas, energía del hidrógeno, pilas (células) de combustible, dispositivos de ahorro energético.
- Administración de medicamentos, especialmente para combatir el cáncer y otras enfermedades.
- Computación cuántica, semiconductores, nuevos chips.
- Seguridad. Microsensores de altas prestaciones. Industria militar.
-Aplicaciones industriales muy diversas: tejidos, deportes, materiales, automóviles, cosméticos, pinturas, construcción, envasados alimentos, pantallas planas...
- Contaminación medioambiental.
- Prestaciones aeroespacioles: nuevos materiales, etc.
- Fabricación molecular.


ARTICULOS


La nanotecnología: un rápido panorama


Eduardo J. Carletti
La mayoría de la gente que escucha por primera vez el témino "nanotecnología" cree que se habla de las técnicas incluidas en el término "microtecnología", la tecnología usada en la microelectrónica y que ha transformado enormemente la sociedad en las últimas décadas. La relación no es del todo incorrecta, pero no es exacta.

La microtecnología es la tecnología que nos permite fabricar cosas en la escala del micrón. Un micrón es una millonésima de un metro, o, para darse una idea más clara, la milésima parte de un milímetro. Todos sabemos cuánto es un metro: más o menos la distancia entre nuestra nariz y la punta de nuestros dedos cuando extendemos del todo un brazo hacia un costado de nuestro cuerpo. Si tomamos una milésima parte de esta longitud, tenemos un milímetro. Un milímetro es muy pequeño, pero todavía podemos verlo. Ahora imaginemos que tomamos un extremo de este milímetro, lo apoyamos en nuestra nariz y lo estiramos hasta que llegue al extremo de los dedos de la mano que se encuentra en el brazo que hemos extendido. Ahora volvemos a dividir en mil partes. Tenemos una milésima de la milésima parte de un metro, una longitud llamada micrón. Esta es la escala en la que se trabaja cuando se construyen dispositivos tales como memorias, circuitos lógicos y de computación.

Los dispositivos de memoria y de lógica en venta en 1985 tenían estructuras con componentes de aproximadamente un micrón de ancho. Para 1995, momento de la aparición del Pentium, se habían alcanzado tamaños de más o menos un tercio de micrón, 350 nanómetros. Se trabaja ya en estructuras de 100 nanómetros, es decir, de un décimo de lo que se había logrado en 1985.

Un nanómetro es la medida que se obtiene si uno toma un micrón, aplica un extremo sobre la punta de la nariz, lo estira hasta el extremo de los dedos del brazo extendido y lo divide en mil partes. Es una milésima de una millonésima de metro, es decir, una milmillonésima de metro.
El nanómetro marca el límite de reducción a que podemos llegar cuando hablamos de objetos materiales. En un nanómetro caben entre tres y cinco átomos. Aunque en el universo hay cosas más pequeñas que los átomos, se trata ya de cosas que no se pueden manipular. En nuestra vida cotidiana, los átomos son los ladrillos de construcción más pequeños que podemos utilizar.

Ahora que estamos pensando en términos de átomos, démosle una mirada a un objeto producido por microtecnología. Aunque la estructura tiene una millonésima de metro de ancho, sigue siendo muy grande. Hay miles de átomos en la superficie de este objeto y miles de millones en su interior. Es un trozo del macromundo. En el interior de este macroobjeto del tamaño de un micrón existe la posibilidad de hacer miles de divisiones para obtener un nivel mayor de detalle. Si logramos llegar a un nivel de detalle del orden del nanómetro y trabajamos con una precisión de nivel atómico, el poder de nuestra capacidad para controlar el comportamiento de este objeto puede hacerse inmenso.

El ejemplo más grandioso de esta potencia se presenta en cada cosa viviente. Se requiere un entorno de agua —el elixir de la vida—, y por esto se le suele llamar "el lado húmedo de la nanotecnología". Las formas de vida que conocemos están hechas de células rellenas con agua, pequeñas bolsas de vida que típicamente tienen tamaños de varios micrones, como en el caso de los glóbulos blancos de la sangre humana.

Cada una de estas "bolsas" está repleta de miles de pequeñas máquinas que se mueven por el mundo líquido de la célula, ocupándose de la industria de la vida —enzimas, hormonas, RNA y ADN—, todas esas cosas que uno oye nombrar en los nuevos textos de medicina, biotecnología e ingeniería genética. Esas pequeñas máquinas son moléculas. Tienen un rango de tamaño de entre uno y varias decenas de nanómetros. ¡Son nanomáquinas! Están formadas por entre miles y decenas de miles de átomos. Y cada uno de esos miles de átomos tiene una ubicación exacta, definida con precisión por un diseño de ingeniería, de modo que el conjunto de esa nanomaquinaria pueda funcionar correctamente.

El ejemplo más impresionante son las enzimas. Cada una de ellas es una factoría química completa reducida a una escala de nanómetros. Estas enzimas han evolucionado durante miles de millones de años para lograr una fabricación cada vez más perfecta de sus productos químicos. En la mayoría de los casos han alcanzado los límites de la perfección. Son los catalíticos finales y fundamentales para esa reacción química que es su trabajo vital. Estas nanomáquinas moleculares son quienes hacen que la vida funcione, no sólo para ellas mismas, sino en cada planta, pájaro o entidad que se arrastra o ha arrastrado sobre la superficie de nuestro planeta.

Esta nanotecnología húmeda es increíblemente poderosa. De hecho, cuanto más se sabe sobre ella más se comprende lo mucho que queda por saber. Pensemos en la hermosura de una joven, o de una flor, o qué increíble es que un ojo humano pueda ver o que un cerebro pueda pensar. Y entonces uno piensa: este lado húmedo de la nanotecnología (que la mayoría de la gente llama biotecnología) puede hacer todo.

Pero a pesar de este increíble poder, hay varias cosas que no se pueden hacer y que nunca se podrán hacer en el lado húmedo. Una de las más importantes es conducir electricidad como un hilo metálico, como una conexión dentro de una computadora o incluso en un semiconductor. Nunca se logrará —las razones son largas para describirlas aquí— con esta biotecnología. De hecho, la mayor parte de la revolución industrial que impulsa la sociedad moderna no es un tributo de la biotecnología, es producto del desarrollo de máquinas de vapor, motores a nafta y todo tipo de artefactos eléctricos, como radios, televisores, teléfonos y computadoras, todos ellos producidos por la tecnología del otro lado, el lado "seco", un área que parecería apuntar a ser la de mayor desarrollo potencial.

Imagínense lo que podría llegar a ser nuestro mundo si se pudiesen fabricar en el lado seco, sin agua ni células vivas, objetos con el grado de perfección atómica que la vida logra rutinariamente en el lado húmedo. Imagínense por un momento el poder que tendría el lado seco de la nanotecnología. La lista de cosas que se podría lograr con una tecnología así parecen algo así como la lista de deseos navideños de nuestra civilización.
Veamos algunas:

Una nanomáquina de escribirEn 1989, unos físicos del Centro de Investigación de Almaden de la empresa IBM, ubicado en San José, California, sorprendieron al mundo científico al usar un microscopio de sonda vibrátil para mover unas serie de átomos de xenón sobre una superficie de níquel, escribiendo una versión microscópica del logo de IBM. Aunque el experimento demostró que se podían construir cosas a nanoescala, no dejaba de ser una experiencia exótica y única, que requería un microscopio fabricado a propósito, una habitación especial a prueba de vibraciones y un ambiente de temperaturas alrededor de los -270 grados centígrados, sólo unos grados por encima del cero absoluto.

Pero sólo diez años después se ha creado el AFM, sigla de Atomic Force Microscope. Este instrumento está cambiando la manera en que los científicos interactúan con la materia en pequeña escala.

Pique para ampliarDentro de la cámara del AFM, de un modo invisible al ojo normal, los extremos de unas delgadísimas agujas se introducen en un substrato de moléculas orgánicas, luego estas agujas, afiladas hasta tener sólo unos átomos de ancho en la punta, escriben palabras de sólo una decena de nanómetros de ancho. El proceso funciona basándose en que las moléculas orgánicas, tal como la tinta en una lapicera fuente, fluyen desde el extremo de la aguja a la superficie de escritura, hecha de oro. Incluso tienen la posibilidad de usar distinto tipos de "tintas" y de cambiarlas en un momento.
 Para tener una idea de la escala de la escritura resultante digamos que, con la ampliación óptica que se necesita para leer esas letras, una línea escrita por un bolígrafo se vería de más de un kilómetro de ancho.

Para dar un poco de espectáculo, que para los yanquis nunca viene mal, usaron un AFM provisto con un conjunto de ocho agujas para escribir en menos de 10 minutos una página completa de un famoso texto que el físico Richard Feynman concibió en 1960, en un impresionante y certero acto de predicción, sobre las posibilidades de la nanotecnología.
Y todo eso a temperatura ambiente.

Esa fue sólo una prueba. El sistema no está pensado para escribir, por lo menos no en el sentido convencional que le damos a la palabra. Este sistema de litografía puede convertirse en una rápida solución para manufacturar nanocomponentes, desde microelectrónica a chips ADN (usados en genética) más rápidos y densos. Puede ser en la manera de producir nanoestructuras de manera masiva. Y puede ser el primer paso en la evolución de las herramientas que se necesitarán para fabricar nanomáquinas que luego sean capaces de hacer copias de sí mismas y construir otras: los nano robots.

Los nano robots:Los nano robots ya han sido explotados en la CF y las aplicaciones propuestas pasan por ítems difíciles de imaginar unas décadas atrás: Mantenimiento del cuerpo por dentro, reparación y recableado de tejido cerebral a control remoto, reparaciones corporales (arterias, cristalino, oído, órganos internos, tumores) sin necesidad de operación.
Rodamiento a escala nanoscópicaLa tecnología aún está lejos de producirlos, pero, como en el campo de la Inteligencia Artificial, es una cuestión tan complicada y tan difícil que se avanza en diversos frentes. Una de la áreas sería la tratada en el bloque anterior: las herramientas; ya dimos una idea de cómo es una de las propuestas más concretas. Pero con carrocería solamente no se puede funcionar, también se requiere control, y aquí entra un mundo diferente al de los sensores nanoscópicos, las matrices de tamaños de nanómetros y las moléculas gigantes: la computación a nivel de la nanotecnología. Hace años que se diseñan compuertas lógicas mecánicas compuestas de unos pocos átomos y parecería que sólo se esperan las herramientas necesarias para construirlas. El panorama no es tan simple, pero existen innumerables laboratorios trabajando en la "inteligencia" nanométrica. Y ya hay algunos anuncios.

Memoria:En un laboratorio de IBM en Zurich, uno de los que ayudaron en la invención de aquel microscopio AFM de 1986, se trabaja en la miniaturización a nivel nanómetro del registro de datos. El sistema de almacenamiento se basa en un conjunto de 1024 agujas de AFM en una matriz cuadrada que pueden escribir bits de información de no más de 50 nanómetros de diámetro. El mismo conjunto es capaz luego de leer la información e incluso reescribirla.

Pique para ampliarLa capacidad de guardar información a esa escala es una noticia excitante para el mercado, pues multiplica inmensamente la cantidad de información que se puede almacenar en un área determinada. El mejor sistema actual de registro, basado en la memoria magnética, puede guardar alrededor de dos gigabits por centímetro cuadrado; los físicos creen que el límite físico de la capacidad este sistema —no alcanzado aún— es de alrededor de 12 gigabits por centímetro cuadrado. El sistema de matriz de agujas descripto más arriba, bautizado "Millipede" (Miriápodo, por tener mil patas), ofrece 35 gigabits por centímetro cuadrado (y hasta 80 gigabits si se utiliza una aguja única) y es capaz de hacerlo a la velocidad de los artefactos magnéticos actuales. Con unidades de almacenamiento provistas de matrices gigantescas, con millones de agujas, se puede lograr un almacenamiento en el orden de los terabytes, algo así como 40 veces lo que está disponible hoy comercialmente.

Computadoras ubicuas:La miniaturización a nivel nanométrico apunta a la inserción de potentes computadoras en relojes de pulsera y teléfonos celulares que posean algo que hoy no tienen: un disco rígido. Se supone que la tecnología del "Miriápodo" proveerá de discos rígidos de una capacidad en el orden de los gigabytes y de un tamaño de un centímetro cuadrado. Una de las cosas más importantes es que este nanodrive de tecnología AFM requerirá mucho menos energía para su operación que los de tecnología magnética, un factor extremadamente crítico en los productos portátiles.

Exploración espacial: sondas autorreproductoras:Si bien los logros en el rubro de la autoconstrucción son mínimos, algunos laboratorios han demostrado, por ejemplo, que cubriendo la superficie de una placa de base (hoy se usa oro) con una pegajosa capa de material orgánico se logra, bajo las condiciones apropiadas, lograr que miles de estas placas se acomoden por sí solas para formar estructuras tridimensionales. Esto parece caótico y anárquico por definición, sin embargo, en la Universidad de Harvard han logrado crear un circuito electrónico relativamente funcional usando una técnica similar.
En la Universidad de Texas en Austin, un científico ha buscado, entre millones de proteínas, aquellas capaces de reconocer y unir diferentes tipos de materiales inorgánicos. Se ha fundado ya una compañía, Semzyme, que busca crear una "biblioteca" de bloques de construcción mediados por proteínas.

En la Universidad de California, en la Universidad Yale de Los Angeles, en la Universidad Rice y en Hewlett-Packard se avanza en el desarrollo de computadoras moleculares auto-construidas.

En la web se puede encontrar un proyecto de la NASA relativo a las sondas basadas en sistemas autorreproductores. Es un plan que se lanzó hace más de veinte años para lograr que, en lugar de enviar la totalidad del equipamiento necesario para una exploración desde la Tierra, lo cual significa muchas toneladas puestas en el espacio, se envíen solamente ciertos robots capaces de construir el resto del equipamiento a partir de la materia prima extraída del lugar de aterrizaje. La NASA no pensó concretamente en nanotecnología, pero los científicos de este área creen que será la única tecnología capaz de superar los problemas que presenta el proyecto, especialmente el de conseguir, reconocer y extraer los materiales necesarios para la construcción. Es un tema tan interesante que dejo su desarrollo para un próximo Tecno Núcleo.

Medicina:En la industria de medicamentos se busca lograr, por medio de nanotecnología, lo que logra en cada instante nuestro cuerpo y el de millones de seres vivos sobre el mundo, pero en condiciones controladas de laboratorio: la construcción átomo a átomo de moléculas complejas que hacen a las funciones primordiales de la vida (como la insulina, por dar un ejemplo). El logro de este objetivo sería un inmenso avance para la medicina, pues simplificaría los procesos necesarios para obtener las complejas drogas que componen hoy los medicamentos y pondría al alcance de la ciencia una enormidad de proyectos hoy imposibles.

Aprovechamiento máximo de la energía solar:En Texas, estado de EEUU donde tienen el problema de que consumen gran cantidad de energía, proponen construir por medio de nanotecnología ciertos artefactos (que no se describen) capaces de atrapar cada fotón que les llega y así lograr un aprovechamiento muy eficiente de la energía solar. Estos colectores solares serían capaces de atrapar los fotones en unas nanoestructuras de escala menor que la longitud de onda de la luz solar, que es de entre 400 y 1000 nanómetros. El sistema de almacenaje funcionará como un capacitor (que almacena electrones), pero retendrá en su interior a los fotones.
 

David Gross - Nobel de Física EEUU - pide usar nanotecnología a favor de humanosDavid Gross - Nobel de Física EEUU - pide usar nanotecnología a favor de humanos
El estadunidense David Gross, Premio Nobel de Física 2004, expresó hoy su confianza en que la nanotecnología sea empleada en el mundo para el bienestar y la salud de los seres humanos, pero no para su destrucción.

"Evitar una guerra nuclear ha constituido un milagro para la humanidad en los últimos 65 años", dijo Gross a la prensa, al tiempo que se pronunció por la total eliminación de las armas nucleares.

Gross, quien también es director del Instituto de Física Teórica de la Universidad de Santa Bárbara, en Estados Unidos, participa en La Habana en el III Seminario Internacional de Nanociencias y Nanotecnologías, que concluye este jueves.

Ante la presencia de unos 70 expertos de varios países, Gross ofreció el miércoles una conferencia magistral titulada "Nano y Nanofísica".

El destacado científico estadunidense tuvo además palabras de elogio por el desarrollo de la ciencia en Cuba.

La última jornada del Seminario está dedicada a la Nanobiotecnología y Nanomedicina, así como a la Nanoseguridad e impacto social de las nanotecnologías.

Nanotecnología y los posibles impactos sobre el medioambiente y la salud

Hace unos días la Agencia de Protección del Medioambiente de los Estados Unidos anunció la concesión de becas valoradas en un total de $4 millónes de dólares y destinadas a equipos científicos en 12 universidades norteamericanas que investigan posibles impactos de la nanotecnología sobre el medio ambiente y la salud.

Los avances científicos logrados en los últimos tiempos dentro del campo de la nanotecnología han abierto todo un abanico de nuevas posibilidades para la ciencia porque ahora los investigadores trabajan al nivel molecular, átomo por átomo, creando nuevos materiales y estructuras con funciones y características totalmente innovadoras.

Pero estos mismos avances en la nanotecnología aportan todo tipo de incógnitas sobre las consecuencias que nuevas nanoestructuras y nanomateriales podrían tener para el mundo y para el cuerpo humano, y aunque algunas personas sí se han atrevido a plantear el debate (por ejemplo, Eric Drexler desde la Foresight Institute y Mike Treder y Chris Phoenix del Center for Responsable Nanotechnology), hasta ahora ha exisitido cierta escasez de fondos gubernmentales disponibles para financiar investigaciones científicas centradas en este tema.

Según la nota de prensa difundida por la Agencia de Protección del Medioambiente norteamericana, seis de las becas concedidas a los equipos de investigación son para estudios que intentarán determinar si nanomaterials podrían tener un impacto negativo sobre la salud o el medioambiente. Las otras seis becas estarán destinadas para investigaciones sobre el destino y el transporte de nanomateriales. 

La miniaturización a nivel nanométrico apunta a la inserción de potentes computadoras en relojes de pulsera y teléfonos celulares que posean algo que hoy no tienen: un disco rígido. Se supone que la tecnología del "Miriápodo" proveerá de discos rígidos de una capacidad en el orden de los gigabytes y de un tamaño de un centímetro cuadrado. Una de las cosas más importantes es que este nanodrive de tecnología AFM requerirá mucho menos energía para su operación que los de tecnología magnética, un factor extremadamente crítico en los productos portátiles.
Exploración espacial: sondas autorreproductoras:
Si bien los logros en el rubro de la autoconstrucción son mínimos, algunos laboratorios han demostrado, por ejemplo, que cubriendo la superficie de una placa de base (hoy se usa oro) con una pegajosa capa de material orgánico se logra, bajo las condiciones apropiadas, lograr que miles de estas placas se acomoden por sí solas para formar estructuras tridimensionales. Esto parece caótico y anárquico por definición, sin embargo, en la Universidad de Harvard han logrado crear un circuito electrónico relativamente funcional usando una técnica similar.
En la Universidad de Texas en Austin, un científico ha buscado, entre millones de proteínas, aquellas capaces de reconocer y unir diferentes tipos de materiales inorgánicos. Se ha fundado ya una compañía, Semzyme, que busca crear una "biblioteca" de bloques de construcción mediados por proteínas.
En la Universidad de California, en la Universidad Yale de Los Angeles, en la Universidad Rice y en Hewlett-Packard se avanza en el desarrollo de computadoras moleculares auto-construidas.
En la web se puede encontrar un proyecto de la NASA relativo a las sondas basadas en sistemas autorreproductores. Es un plan que se lanzó hace más de veinte años para lograr que, en lugar de enviar la totalidad del equipamiento necesario para una exploración desde la Tierra, lo cual significa muchas toneladas puestas en el espacio, se envíen solamente ciertos robots capaces de construir el resto del equipamiento a partir de la materia prima extraída del lugar de aterrizaje. La NASA no pensó concretamente en nanotecnología, pero los científicos de este área creen que será la única tecnología capaz de superar los problemas que presenta el proyecto, especialmente el de conseguir, reconocer y extraer los materiales necesarios para la construcción. Es un tema tan interesante que dejo su desarrollo para un próximo Tecno Núcleo.
Medicina:

En la industria de medicamentos se busca lograr, por medio de nanotecnología, lo que logra en cada instante nuestro cuerpo y el de millones de seres vivos sobre el mundo, pero en condiciones controladas de laboratorio: la construcción átomo a átomo de moléculas complejas que hacen a las funciones primordiales de la vida (como la insulina, por dar un ejemplo). El logro de este objetivo sería un inmenso avance para la medicina, pues simplificaría los procesos necesarios para obtener las complejas drogas que componen hoy los medicamentos y pondría al alcance de la ciencia una enormidad de proyectos hoy imposibles.
Aprovechamiento máximo de la energía solar:

En Texas, estado de EEUU donde tienen el problema de que consumen gran cantidad de energía, proponen construir por medio de nanotecnología ciertos artefactos (que no se describen) capaces de atrapar cada fotón que les llega y así lograr un aprovechamiento muy eficiente de la energía solar. Estos colectores solares serían capaces de atrapar los fotones en unas nanoestructuras de escala menor que la longitud de onda de la luz solar, que es de entre 400 y 1000 nanómetros. El sistema de almacenaje funcionará como un capacitor (que almacena electrones), pero retendrá en su interior a los fotones.